点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:家彩网官方|家彩官网网址
首页>文化频道>要闻>正文

家彩网官方|家彩官网网址

来源:家彩网骗局2024-02-29 17:48

  

家彩网官方

【青椒谈】充分认识教育、科技、人才一体化推进的重大战略意义******

  作者:郭绍均(四川大学马克思主义学院副教授、四川省中国特色社会主义理论体系研究中心特约研究员)

  党的二十大报告指出:教育、科技、人才是全面建设社会主义现代化国家的基础性、战略性支撑。这是我们党首次在党代会报告中将教育、科技、人才工作进行专题部署和系统谋划,极大深化了对教育、科技、人才一体化推进的重大理论和实践问题的规律性认识,为新时代新征程坚持教育优先发展、科技自立自强、人才引领驱动,加快建设教育强国、科技强国、人才强国指明了奋斗方向、提供了行动纲领。教育、科技、人才是深度关联、互为依存、相互作用的有机整体,教育、科技、人才一体化推进,是百年大党波澜壮阔的奋斗历程特别是新时代治国理政伟大实践的深刻经验总结,也是实现党和国家事业兴旺发达、长治久安的深远考量和战略部署。

  一、教育、科技、人才一体化推进,是关乎国家和民族长远发展的重大战略擘画

  全党全国各族人民正在为全面建设社会主义现代化国家、实现中华民族伟大复兴的中国梦而团结奋斗,我们比以往任何时候都更加需要符合中国国情和发展需要的教育、更加离不开强大的科技创新力量、更加渴求卓越人才。教育强国、科技强国、人才强国,是不断推进和拓展中国式现代化、全面建成社会主义现代化强国的应有之义。无论是加快建设制造强国、质量强国、航天强国、交通强国、网络强国、海洋强国、贸易强国、文化强国、体育强国、农业强国等,还是扎实推进美丽中国、法治中国、平安中国、健康中国、数字中国等,都离不开教育强国、科技强国、人才强国的坚实支撑。

  改革开放以来特别是党的十八大以来的实践证明,建设社会主义现代化国家、推进中华民族伟大复兴,基础在教育、关键是科技、归根结底靠人才。全面建设社会主义现代化国家已经进入开局起步的关键时期,中华民族伟大复兴已经进入不可逆转的历史进程,这为教育、科技、人才事业发展提供了历史性机遇、奠定了坚实基础、创造了有利条件。新时代新征程摁下了全面推进中华民族伟大复兴的“快捷键”,但民族复兴绝不是轻轻松松就能实现的,我们必须准备付出更为艰巨、更为艰苦的努力。时代越是向前,教育、科技、人才的重要性就愈发凸显,教育、科技、人才一体化推进的地位和作用就愈发显要。

  二、教育、科技、人才一体化推进,是在国际竞争中占据先机和优势的必然要求

  大国发展史表明,教育孕育未来,科技彰显实力,人才是战略资源,三者的协同配合对提升综合国力至关重要。没有一流的教育,就不可能有一流的科技实力和源源不断的高素质人才大军;没有科技领先,就不可能实现教育事业和人才培养的领先;没有人才优势,就不可能发挥出教育和科技的应有作用。当前,世界之变、时代之变、历史之变正以前所未有的方式展开,新一轮科技革命和产业变革迅猛发展,围绕科技制高点和高端人才的战略博弈空前激烈,教育领域的赛道和赛跑呈现出新的发展态势和特征。世界主要国家都在寻找塑造竞争优势的突破口,力争抢占未来发展的先机。当今世界综合国力竞争不是单项竞争,教育、科技、人才都是衡量一个国家综合国力的重要指标,大力推动教育发展、科技创新、人才培养无不是各国增强综合国力和提升国际竞争力的“关键密码”“制胜法宝”。

  面对国内外环境的深刻复杂变化,我们必须以更高远的历史站位、更宽广的国际视野、更深邃的战略眼光,提高对教育的基础性、先导性、全局性地位和作用的认识,对科技竞争犹如“逆水行舟,不进则退”的认识,对人才竞争在综合国力竞争中决定性作用的认识。在新的历史起点上,我们必须向着更高水平、更高目标,以更大的力度、更实的举措,确保教育、科技、人才一体化推进,使我国拥有教育发展优势、科技比较优势、人才竞争优势,从教育、科技、人才的大国迈向教育、科技、人才的强国,以进一步在国际竞争中赢得优势、赢得主动、赢得未来。

  三、教育、科技、人才一体化推进,是推动我国经济社会高质量发展的大势所趋

  我国是世界上最大的发展中国家,发展是解决我国所有问题的关键、党执政兴国的第一要务,高质量发展是全面建设社会主义现代化国家的首要任务。从全球范围和我国实际看,教育、科技、人才同经济社会发展加速渗透融合,越来越成为推动经济社会发展的主要力量。教育、科技、人才一体化推进,是推动经济社会高质量发展的迫切要求和强大驱动,充分体现了我们党对教育规律、科技发展规律、人才成长规律,对教育、科技、人才工作内在规律,对经济社会发展规律的高度遵循、深刻认识和巧妙运用。

  教育是国之大计、党之大计,决定着科技创新的高度和人才培养的质量。必须始终把教育摆在优先发展的战略位置,把教育作为推动高质量发展的重要先手棋,不断使教育同党和国家事业发展要求相适应、同人民群众期待相契合、同我国综合国力和国际地位相匹配。经济社会发展将更多依靠科技进步,抓住了科技创新就抓住了牵动我国发展全局的牛鼻子。必须坚持走中国特色自主创新道路,坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,加快实现高水平科技自立自强,打通从科技强到产业强、经济强、国家强的通道。人才越来越成为推动经济社会发展的战略性资源。必须全方位支持人才、帮助人才,千方百计造就人才、成就人才,择天下英才而用之,加快建设世界重要人才中心和创新高地,加快形成有利于人才成长的培养机制、有利于人尽其才的使用机制、有利于人才各展其能的激励机制、有利于人才脱颖而出的竞争机制,为推动经济社会高质量发展培育和凝聚各类优秀人才。

  立足新发展阶段、贯彻新发展理念、构建新发展格局、推动高质量发展,必须从全局性、战略性、前瞻性的高度认识教育、科技、人才一体化推进的重大作用和基本特点,把科技作为推动发展的第一生产力、人才作为支撑发展的第一资源、创新作为引领发展的第一动力,并使之更好结合起来,着力形成有利于经济社会高质量发展的坚实基础、不竭动力、智力支持。这要求继续坚持教育优先发展、科技自立自强、人才引领驱动,确保科教兴国战略、人才强国战略、创新驱动发展战略的持续性联动和高度协同,努力实现更高质量、更有效率、更加公平、更可持续、更为安全的发展,开创经济社会发展新局面。

  【本文系国家社会科学基金青年项目“习近平新时代国家治理思想的内容体系、理论创新与当代价值研究”(项目批准号18CKS025)阶段性成果】

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 刑满释放人员持刀猛刺狱警致死 被提起公诉

  • 饮食应少糖多酸,保护血管效果明显

独家策划

推荐阅读
家彩网开户习言道|实干是成就事业的必由之路
2024-03-13
家彩网网投近300股跌停!沪指跌0.77%,创业板指暴跌2.55%
2024-04-19
家彩网网址"昶洧"你会读吗?造电动车了
2024-02-15
家彩网软件中国父母最容易犯七错误
2024-08-18
家彩网下载一年了,为民办实事的承诺兑现了吗?
2023-12-07
家彩网邀请码《看见》他为劳动者拍时尚大片 张张惊艳
2023-12-25
家彩网下载app华为方面披露股权架构:任正非有否决权而非决定权
2024-08-23
家彩官网现实版逆袭:废柴青年变身救人英雄
2024-07-31
家彩网规则英超-德赫亚送礼曼联平切尔西
2024-01-06
家彩网投注中国大使投书英媒谈华为:背后折射出三道“选择题”
2024-06-29
家彩网赔率 快讯 | 国家卫健委:我国儿童青少年总体近视率达53.6%
2024-05-01
家彩网开奖结果打败低效:开学季手帐大作战
2024-08-21
家彩网娱乐 删节版视频后又现删节版录音,刘强东“性侵案”已成公关大火拼
2024-04-17
家彩网app下载IAEA称伊朗更改福尔多核设施离心机互连方式 伊朗否认
2024-03-21
家彩网返点乐清母亲策划儿子失联虚假警情 一审被判1年3个月
2024-04-15
家彩网手机版央行:新版征信报告对个人影响变化不大
2024-01-23
家彩网走势图习近平出席第二届“一带一路”高峰论坛纪实
2023-12-24
家彩网交流群运20疑似已装配新型涡扇20发动机 推力更大油耗更低
2024-02-23
家彩网登录[专访]康劲:照片年卖百万
2024-01-26
家彩网手机版APP 慈禧五代外孙女曝光,百年之后又见“慈禧”,网友:太像了
2024-10-11
家彩网论坛 知否:来北欧看哪些世界遗产?
2024-02-14
家彩网APP重复使用的食用油会促进乳腺癌转移
2024-06-11
家彩网漏洞[征集]寻找中式风景禅意美
2024-01-09
家彩网官方网站日本人十连休假期出国旅客数将创新高 来中国的最多
2024-06-08
加载更多
家彩网地图